abo_giftabo_onlineabo_printabo_studentabo_testangle_leftangle_rightangle_right_filledarrow_big_downarrow_big_down_filledarrow_big_leftarrow_big_left_filledarrow_big_rightarrow_big_right_filledarrow_big_uparrow_big_up_filledarrow_dropdown_downarrow_dropdown_uparrow_small_leftarrow_small_left_filledarrow_small_rightarrow_small_right_filledarrow_stage_leftarrow_stage_left_filledarrow_stage_rightarrow_stage_right_filledcaret_downcaret_upcloseclose_thinclose_thin_filledcontactdownload_thickdownload_thick_filleddownload_thindownload_thin_filledebookeditelement_headlineelement_labelelement_relatedcontentlockmailminuspagepage_filledpagespages_filledphoneplusprintprint_filledquotationmarks_leftquotationmarks_rightsearchsendshareshare_filledshoppingcart_bigshoppingcart_big_filledshoppingcart_headershoppingcart_smallshoppingcart_small_filledsocial_facebooksocial_linkedinsocial_pinterest social_xsocial_xingsocial_youtubesocial_twitteruser_biguser_small

Journal articles

Reset filter
  • Author(s)

  • Language of Publication

  • Published

  • Category

Journal

  • Select allDe-select all
Author(s)TitleJournalIssuePageCategory
Noakowski, P.; Breddermann, M.; Harling, A.; Schnetgöke, J.Rißbildung in turmartigen Tragwerken - Schleuderbetonmast versus StahlbetonschornsteinBeton- und Stahlbetonbau7/2005538-548Fachthemen

Abstract

Im Zeitalter des Mobilfunks dienen viele turmartige Bauwerke als Antennenträger. Viele davon stellen die besonders dafür konzipierten Schleuderbetonmaste sowie alte, entsprechend nachgerüstete Schornsteine dar. Manche dieser Tragwerke weisen auffällige Vertikalrisse auf, deren Auswirkung auf die Tragfähigkeit begutachtet werden muß. Bei dieser Aufgabe muß in Betracht gezogen werden, daß das im Erfahrungsbereich liegende Rißverhalten normaler Betontragwerken nur bedingt auf Schleuderbetontragwerke übertragbar ist. In diesem Sinne befaßt sich der vorliegende Beitrag mit der Erforschung der Unterschiede im Rißverhalten der hochfesten Schleuderbetonmaste gegenüber dem der niederfesten Betonschornsteine. Die entsprechenden Untersuchungsergebnisse wurden mit der Rißnachweismethode der Normen DIN V 1056, DIN EN 13084 und CICIND Model Code gewonnen und stellen einen wichtigen Teil der Qualitätssicherung von turmartigen Tragwerken dar.

x
König, G.; Dehn, F.; Fischer, O.; Krill, A.Vorgespannter hochfester Leichtbeton - Teil 2: Bemessung und Konstruktion vorgespannter BauteileBeton- und Stahlbetonbau7/2000402-414Fachthemen

Abstract

Um wirtschaftliche hochfeste Konstruktionsleichtbetone mit möglichst geringer Trockenrohdichte und guter Verarbeitbarkeit zu entwickeln und bestehende Forschungslücken zum Tragverhalten zu schließen, wurde ein mehrjähriges Verbund-Foschungsvorhaben aufgelegt, dessen Ergebnisse im Rahmen eines Pilotprojektes erstmals erfolgreich eingeflossen sind. Dieser Aufsatz widmet sich den durchgeführten Untersuchungen zum Tragverhalten. In mehreren Versuchsserien an Probebalken wurde für Konstruktionsleichtbetone unterschiedlicher Festigkeiten der Einfluß seiner Normaldruckkraft auf die Schub- und Biegetragwirkung untersucht mit dem Ziel, die Bemessungsansätze nach DIN 1045-1, Model Code MC 90 und ENV 1992-1-1 (EC 2) zu überprüfen bzw. ggf. zu modifizieren sowie konstruktive Details für Bauteile aus vorgespanntem Leichtbeton bereitzustellen. Die Untersuchungen stellen die Voraussetzungen für den sicheren Einsatz von hochfestem Konstruktionsleichtbeton im Spannbetonbau dar.

x
Albrecht, U.Durchstanzen bei Flachdecken - Vergleich der Bemessung und KonstruktionBeton- und Stahlbetonbau3/1999130-140Fachthemen

Abstract

Die Bemessungsansätze und die Konstruktionsregeln für den Nachweis gegen Durchstanzen von Stahlbeton-Flachdecken unterscheiden sich deutlich voneinander. Die Querkrafttragfähigkeit, die gemeinsame Tragfähigkeit von Beton und Schubbewehrung und die daran geknüpfte baulilche Durchbildung werden für vier europäische und zwei nordamerikanische Normen sowie den CEB-FIP Model Code gegenübergestellt. Am Beispiel einer Flachdecke eines Bürogebäudes mit üblichen Abmessungen wird gezeigt, welche Möglichkeiten und Grenzen die Normen im einzelnen bieten und welche baupraktischen Konsequenzen die neue DIN 1045-1 und der EC 2 haben werden.

x
Zeuli, Vincenzo; Maier, Christof; Diaz, José Manuel Suarez; Saeed, Fahed Ahmed; Tharamapalan, Jayapregasham; Germani, Carlo; Bayer, Lars; Atzl, GeorgStructural design of precast segmental lining reinforced by steel fibresGeomechanics and Tunnelling4/2021356-366Topics

Abstract

Dubai Municipality awarded to Porr Besix JV the Project for the Main Tunnel component of the Deep Storm Water System. The tunnel will collect both rainwater and groundwater from approximately 500 sq. km and transfer the captured flow to the sea. The Design Builder JV selected COWI as Designer of the entire Project and IC Consultant as Design Checker for the Tunnels. The Project includes approximately 10.3 km of 10-meter-inside diameter tunnel in rock, three construction shafts and one drop shaft. The main tunnel will convey stormwater and groundwater flows from the EXPO 2020 area near the intersection of Sheikh Mohammed Bin Zayed Road and Jebal Ali Lehbab Road to the sea close to the EGA facility. The tunnel will follow beneath the road easement along Jebal Ali Lehbab Road and along Sheikh Zayed Road and continue to the pumping station. The tunnel traversed through the Barzaman and Fars formation with an overburden of 33 m with maximum water pressure of 4.4 bar and was excavated by EPB TBMs. This project is characterized by its dimensions with an internal diameter of 10 m and 350 mm of segment thickness, and by the use of steel fibre reinforced concrete in the precast segmental lining. The use of fibres aims to reduce the CO2 footprint obtaining an optimized design from the environmental point of view. These facts are associated to a complex design of precast segments, in order to ensure their structural competence and their integrity according to the durability requirements, under large thrust forces (temporary loads) and permanent load. Hence, considering such complexities, the structural design has been carried out producing a 3D structural model by means of a sophisticated FEM structural software. Results of the model allow to identify areas of the segment where spalling and bursting stresses are generated along circumferential joints and maximum value of those stresses in the temporary load cases. Moreover, a structural design verification of the segment has been undertaken considering the contribution of steel fibres class 4c, as it is set up in the FIB model code, aiming to ensure that the precast segments are structurally competent and fulfil the durability requirements of the Project. The article details the design approach and the independent checker design verification approach. The experience gained during construction is also reported, describing challenging aspects of the Tunnel execution and an analysis of the lining damages.

Statischer Entwurf einer mit Stahlfasern verstärkten Tübbingauskleidung
Die Stadtverwaltung von Dubai vergab an die Arbeitsgemeinschaft Porr Besix das Projekt DS233/2 Deep Storm Water System - Main Tunnel. Der Tunnel wird sowohl Regen- als auch Grundwasser ableiten und fast 40 % des gesamten Stadtgebiets von Dubai entwässern. Das Projekt zeichnet sich durch seine Dimensionen mit einem Innendurchmesser von 10 m und einer Tübbingdicke von 350 mm sowie durch den Einsatz von stahlfaserverstärktem Beton in der vorgefertigten Tübbingauskleidung aus. Die Verwendung von Fasern zielt darauf ab, den CO2-Fußabdruck zu reduzieren, um ein aus ökologischer Sicht optimales Design zu erhalten. Um die statische Funktion und Integrität gemäß den Dauerhaftigkeitsanforderungen aufgrund der großen Vortriebspressenkräfte (temporäre Lasten) und unter permanenter Belastung zu gewährleisten, wurde ein 3D-Strukturmodell mithilfe einer FE-Software erstellt. Die Ergebnisse des Modells ermöglichen es, die Bereiche des Segments zu identifizieren, in denen Abplatzungen und Spaltzugspannungen entlang der Umfangsfugen entstehen, sowie den maximalen Wert dieser Spannungen in den temporären Lastfällen. Darüber hinaus wurde ein statischer Nachweis des Segments unter Berücksichtigung des Beitrags von Stahlfasern der Klasse 4c durchgeführt, wie es im FIB-Modellcode festgelegt ist, um sicherzustellen, dass die vorgefertigten Segmente die Anforderungen des Projekts an die statische Tragfähigkeit und Dauerhaftigkeit erfüllen. Der Artikel beschreibt detailliert den Entwurfsansatz und den Ansatz der unabhängigen Prüfung des Entwurfs.

x
Gunkler, Erhard; Marx, Johann Jakob; Blum, CarstenShear resistance of reinforced masonry beams with and without additional concrete or prestress / Querkrafttragfähigkeiten von bewehrten Mauerwerksbalken mit und ohne Aufbeton oder VorspannungMauerwerk3/2017155-167Fachthemen

Abstract

This article investigates the transferability of the Simplified Modified Compression Field Theory (SMCFT) [2], which is known in reinforced concrete design and included in the fib Model Code for Concrete Structures 2010 (Volume 3) [1], to reinforced or prestressed masonry beams (RM beams) with or without an additional layer of concrete. The investigation for this work is the obsolete shear design concept that has been used until now for reinforced masonry under shear loading, which does not adequately reflect the actual load-bearing behaviour of significant areas of masonry. The fundamentals of the SMCFT are explained and the transferability of the theory to RM beams is examined, taking into account in particular the different material properties of masonry compared to reinforced concrete. A first approach for future application is represented by the equations presented here for the determination of the shear force capacity of RM beams. The verification is performed through a comparison of the shear resistances determined experimentally (exp.) and by calculation (calc.).

x
Menrath, H.; Haufe, A.; Ramm, E.Ein nichtlineares Materialmodell für FE-Analysen von StahlverbundträgernStahlbau9/1999703-712Fachthemen

Abstract

Im Mittelpunkt des Beitrages stehen nichtlineare Materialmodelle, die das globale Tragverhalten von Stahlverbundstrukturen wiedergeben. Ein Vorteil ist dabei, daß die Anzahl der Materialparameter gering gehalten werden kann und diese zudem über Normen wie DIN 18800, EC2 und EC4 oder anhand des CEB-FIP Model Code bestimmt werden können. Die Materialmodelle der drei Querschnittskomponenten Stahlbeton, Stahl und der Verbundmittel berücksichtigen ein ver-/entfestigendes Materialverhalten. Eine erste Phase sieht die Anwendung dieser Materialmodelle innerhalb zweidimensionaler Finiter Elemente vor; typische Stahlverbundträger, bestehend aus Stahlbetonplatten als Gurtplatte auf Stahlträgern, verbunden durch Kopfbolzendübel, werden simuliert. In weiterführenden Arbeiten können diese Materialmodelle problemlos auf dreidimensionale Finite Elemente übertragen werden.

x
Qi, Jia-Nan; Ma, Zhongguo John; Wang, Jing-Quan; Liu, Tong-XuPost-cracking shear strength and deformability of HSS-UHPFRC beamsStructural Concrete6/20161033-1046Technical Papers

Abstract

Eleven T-beams, reinforced with high strength steel, were tested to failure to investigate the effect of shear span to depth ratio, fibre ratio, fibre type, concrete strength and stirrup ratio on the shear behaviour, especially post-cracking shear strength and deformability, of ultra-high performance fibre reinforced concrete (UHPFRC) beams. Test results indicated that fibres were efficient not only in enhancing the post-cracking shear strength, but also in improving the post-cracking deformability of UHPFRC beams. In addition, fibres could bridge the cracks and help in redistributing and homogenizing the concrete stress beside the cracks, allowing more short fine diagonal shear cracks with small spacing to develop around the existing cracks. A moderate amount of stirrups can effectively restrain shear cracks and allow more parallel diagonal shear cracks to develop and propagate thoroughly within the shear span. The stiffness of the UHPFRC beams at ultimate state was about 50 % of initial beam stiffness, which was considerable in strength calculations and ductility analysis, especially in seismic performance evaluation. Lastly, the current shear provisions were evaluated using the experimental results.

x
Wieneke, Katrin; Kueres, Dominik; Siburg, Carsten; Hegger, JosefInvestigations of the punching shear behaviour of eccentrically loaded footingsStructural Concrete6/20161047-1058Technical Papers

Abstract

The punching shear design provisions according to various codes have been derived from the results of tests conducted on centrically loaded flat slabs. The application of these provisions for footings and ground slabs might lead to inconsistent results since more compact dimensions and soil-structure interaction lead to higher punching shear capacities. In this context, Eurocode 2 introduced a new design equation for column bases, which was derived from the evaluation of test results from centrically loaded footings.
Since centrically loaded footings represent an exception in practice, Eurocode 2 and ACI 318-14 consider load eccentricities by increasing the applied load, while the fib Model Code 2010 proposes a reduced length of the control perimeter to determine the punching shear resistance. The different approaches were derived from the evaluation of tests on eccentrically loaded flat slabs and have not been verified for footings yet.
Theoretical and experimental investigations on the punching shear behaviour of eccentrically loaded footings indicate a reduction of the multi-axial stress state along the column face with increasing load eccentricity. Based on punching tests on eccentrically loaded footings described in literature, non-linear finite-element simulations were performed and subsequently the influence of load eccentricities on the punching shear behaviour was examined in parametric studies. In this article, the results of the numerical simulations are presented and compared to experimental results and various code provisions.

x
Buttignol, Thomaz Eduardo Teixeira; Colombo, Matteo; di Prisco, MarcoLong-term aging effects on tensile characterization of steel fibre reinforced concreteStructural Concrete6/20161082-1093Technical Papers

Abstract

The paper discusses the effect of aging on steel fibre reinforced concrete (SFRC) after 10 years. The aim is to observe the change in mechanical properties, especially of the residual post-cracking tensile strength, due to long-term aging. For this purpose, a comparison between the results of four-point bending tests (4PB) at the age of 1 year and 10 years was carried out and it indicates that aging affects the serviceability post-cracking residual strength, increasing fibre interfacial bond strength. Material classification is performed according to fib Model Code 2010 for 1-year old and 10-year old specimens. The objective is to estimate possible changes in the material class through the years. Three- and four-point bending test results on 10-year old specimens are described, together with a comparison between those tests. Both tests showed very similar results; slightly higher values were obtained with the three-point bending (3PB) test. The tensile constitutive law is obtained according to fib Model Code 2010 and is compared with results of direct tensile tests on cylindrical specimens and Double Edge Wedge Splitting tests on prismatic specimens. A plane section (PS) approach adopting the tensile constitutive law is applied to predict the bending behaviour in terms of nominal stress against crack mouth opening displacement and it is compared with the bending test results.

x
Zimmermann, Thomas; Lehký, David; Strauss, AlfredCorrelation among selected fracture-mechanical parameters of concrete obtained from experiments and inverse analysesStructural Concrete6/20161094-1103Technical Papers

Abstract

The correlations among selected parameters of concrete were investigated for concrete mixes of the strength classes C20/25, C25/30, C30/37, C40/50 and C50/60. The focus was laid on correlations between basic mechanical parameters such as compressive strength, tensile strength and modulus of elasticity as well as parameters related to concrete fracture, represented here by specific fracture energy. Laboratory tests examining the fracture behaviour and mechanical properties were carried out in order to determine the fundamental concrete parameters. In particular, standard compression tests on test cubes and three-point bending tests on beams with central edge notch were performed. Additional material parameters were identified using the inverse analysis technique. Finally, correlation factors between different parameters of concrete were identified using the rank-order correlation method.

x
Sakai, Koji; Shibata, Toshio; Kasuga, Akio; Nakamura, HikaruSustainability design of concrete structuresStructural Concrete6/20161114-1124Technical Papers

Abstract

Concrete has become the most used material on Earth over the 200 years following the invention of modern cement. The design concept has undergone a transition from the allowable-stress design method, limit-state design method, to the performance-based design method, in response to the evolution of materials, sophistication of experimental facilities, and advancement of computation skills. From the issues on resources and energy depletion, global warming, and resilience etc., it is necessary to create a new design framework taking into consideration the required performance beyond the conventional concept, in order to construct infrastructure and buildings in a more rational way. In other words, we should construct a design system that sets the continued existence of the diverse and rich global environment as its most important criterion of value. In this paper, we review the design and technology system developed in the past and discuss it based on the above-mentioned new viewpoint, while constructing and presenting a new design system for concrete structures, focusing mainly on the concept of sustainability, which is regarded as the most important factor in achieving conservation of Earth's rich resources as well as sound socio-economic activities of humankind in the future, and we examine its feasibility.

x
von Greve-Dierfeld, Stefanie; Gehlen, ChristophPerformance-based durability design, carbonation, part 3: PSF approach and a proposal for the revision of deemed-to-satisfy rulesStructural Concrete5/2016718-728Technical Papers

Abstract

A performance-based safety factor durability design format is proposed and developed with respect to carbonation of concrete. Deemed-to-satisfy rules based on a partial safety factor design approach are developed for the carbonation of concrete. This design format follows the design procedure proposed in EN 1990 [1]. For the design format, the limit state equation for the carbonation is introduced in its probabilistic and safety factor format. The PSF approach has been used to derive design charts. Values for minimum concrete cover depending on material resistance and exposure class are proposed for critical environmental conditions and a design service life of 50 years.

x
Di Carlo, Fabio; Meda, Alberto; Rinaldi, ZilaDesign procedure for precast fibre-reinforced concrete segments in tunnel lining constructionStructural Concrete5/2016747-759Technical Papers

Abstract

This paper presents a procedure for designing precast tunnel segments for mechanically excavated tunnel linings in fibre-reinforced concrete, without any traditional steel reinforcement. Both ultimate and serviceability limit states are considered as well as structural checks at different construction stages of the segment, including demoulding, positioning on floor, storage, transportation, handling and the final stage concerning the loads due to the ground pressure.
The structural checks are performed by means of bending moment-axial force interaction envelopes for both the considered limit states, once the constitutive relationship of the material is defined for each stage. Traditional interaction envelopes are drawn for the ultimate limit state check, whereas for the serviceability limit state check, envelopes obtained by limiting the maximum crack opening and maximum concrete compressive stress are proposed. The shear action is also accounted for by reducing the bending moment-axial force envelope. The possibility of having the assistance of a test procedure for particular loading situations is also proposed. Finally, a case study related to a precast steel fibre-reinforced concrete segment is analysed in order to clarify the procedure and show, practically, how to define the actions and evaluate the interaction envelopes.

x
Yu, Qiang; Le, Jia-Liang; Hubler, Mija H.; Wendner, Roman; Cusatis, Gianluca; Ba ant, Zden k P.Comparison of main models for size effect on shear strength of reinforced and prestressed concrete beamsStructural Concrete5/2016778-789Technical Papers

Abstract

This paper presents a critical comparison of the existing code provisions for the shear strength of concrete beams. The comparison is based on the computerized filtering-out of the inevitable statistical bias from the available multivariate database on shear strength, on an examination of the predicted size effects on shear strength and their underlying hypotheses and on the results of recent high-fidelity numerical simulations of shear failure. In addition to examining the existing models, the present comparison also provides several key considerations for testing the scientific soundness of any model of shear failure in concrete beams, which is necessary for future revisions to the design code provisions.

x
Yang, Yuguang; den Uijl, Joop; Walraven, JoostCritical shear displacement theory: on the way to extending the scope of shear design and assessment for members without shear reinforcementStructural Concrete5/2016790-798Technical Papers

Abstract

This paper presents a new theory for the shear capacity of reinforced concrete members without shear reinforcement. While recognizing that there are multiple failure mechanisms, the theory attributes the opening of a critical flexural shear crack as the lower bound of the shear capacity. It proposes that the shear displacement of an existing flexural crack can be used as the criterion for the unstable opening of the critical flexural shear crack. Based on the theory, the paper presents a simplified shear evaluation model. Compared with the current shear provisions in the design codes, the model is characterized by good accuracy and a solid physical background. It demonstrates a great flexibility for dealing with complex design conditions. As an example, the paper discusses the possibility of extending the theory to the shear resistance of higher-strength concrete. The suggested method provides a more logical and fluent transition from normal- to high-strength concrete and shows good agreement with experimental observations.

x
Figueira, Diogo; Sousa, Carlos; Calçada, Rui; Neves, Afonso SerraDesign recommendations for reinforced concrete interfaces based on statistical and probabilistic methodsStructural Concrete5/2016811-823Technical Papers

Abstract

A concrete interface is a material discontinuity that requires special care with respect to structural design and assessment. Therefore, the definition of design expressions based on experimental testing data must ensure the necessary reliability depending on the type of structure and its use. The present work describes a new proposal for the design of concrete interfaces subjected to shear loading for different roughness profile types. The proposal is characterized by three linear branches (for monotonic loading) and an S-N curve (for cyclic loading) and is the result of a parametric analysis of existing experimental data (obtained by the authors and also from an extensive literature search) based on statistical and probabilistic methods. Design expressions were defined in order to minimize the dispersion and variability of the safety factor values for each experimental test considered and also to assure that those values are within a target range (defined according to reliability considerations). These improvements became clearer when the new proposal was compared with the most common design code recommendations.

x
von Greve-Dierfeld, Stefanie; Gehlen, ChristophPerformance-based durability design, carbonation part 2 - Classification of concreteStructural Concrete4/2016523-532Technical Papers

Abstract

At present, prescriptive regulations with regard to concrete cover and composition are applied to provide sufficient durability of reinforced concrete members under exposure conditions with different degrees of severity. In view of current knowledge on deterioration mechanisms and their modelling, it is planned to change from these deemed-to-satisfy specifications to a performance-based design approach in future standards. In such specifications, concrete durability design is based on the statistically characterized performance of concrete, determined in standardized tests with respect to defined classes of concretes with similar performance.
This paper presents the results of a study in which concrete mixes were tested and analysed with respect to their carbonation resistance. Compositions with similar performance are grouped into carbonation resistance classes. These classes are described statistically and requirements for performance testing are given. In addition, composition requirements are introduced in order to determine concrete performance depending on mix composition prescriptively. Finally, an example is given for the assessment of concrete performance with regard to carbonation.
This work was carried out at the request of JWG under CEN TC 250/SC2 and CEN TC 104/SC1 as an input and starting point for the ongoing committee work to implement the methodology from the fib Model Code for Concrete Structures 2010 in the next generation (2021) of European concrete standards.

x
di Prisco, Marco; Martinelli, Paolo; Parmentier, BenoitOn the reliability of the design approach for FRC structures according to fib Model Code 2010: the case of elevated slabsStructural Concrete4/2016588-602Technical Papers

Abstract

This paper focuses on the reliability of the design approach proposed in the fib Model Code for Concrete Structures 2010 for estimating the ultimate capacity of fibre-reinforced concrete (FRC) elevated slabs on the basis of different tests for material characterization. The fracture properties of the material are determined through three-point bending tests on notched beams and through double edge wedge splitting (DEWS) tests carried out on cylinders cored in the full-size test structure. As a case study, an FRC elevated flat slab 0.2 m thick is considered which consists of nine bays (panels) measuring 6 × 6 m (overall size 18.3 × 18.3 m) and is supported by 16 circular concrete columns. The ultimate bearing capacity of the slab determined experimentally is compared with the design value predicted by means of a procedure based on limit analysis following fib Model Code 2010. The results show that the method proposed in fib Model Code 2010 using the characteristic values and the classification is reliable. Even if the tests are affected by a significant standard deviation and the two experimental campaigns with three-point bending tests give a significant difference between class “5c” and class “3e”, the structural test results in a loadbearing capacity that is always larger than the predicted one, which considers a safety coefficient for the material &ggr;F = 1.5.

x
Hümme, Julian; von der Haar, Christoph; Lohaus, Ludger; Marx, SteffenFatigue behaviour of a normal-strength concrete - number of cycles to failure and strain developmentStructural Concrete4/2016637-645Technical Papers

Abstract

The fatigue behaviour of concrete is gaining new relevance against the backdrop of continuous developments in concrete construction. Modern types of concrete are achieving ever higher strengths; hence, concrete structures are becoming increasingly attractive for new fields of application such as onshore and offshore wind turbines. The fatigue of concrete has a special relevance for these cyclically loaded structures and knowledge of the number of cycles to failure is no longer sufficient for their design. There are further questions concerning strain and stiffness development and the combination of fatigue loading and maritime environmental conditions which have been investigated with new testing methods at Leibniz Universität Hannover within the scope of the “ProBeton” research project. The first results of this project, which is supported by the Federal Ministry for Economic Affairs and Energy, are presented here.

x
von Greve-Dierfeld, Stefanie; Gehlen, ChristophPerformance based durability design, carbonation part 1 - Benchmarking of European present design rulesStructural Concrete3/2016309-328Technical Papers

Abstract

The paper reports on a benchmark of European deemed-to-satisfy rules for exposure class XC (carbonation exposed structural members). The benchmark of the descriptive rules was carried out following the probabilistic design approach for carbonation-induced corrosion developed in [1] and adopted in fib bulletin 34: Model Code for Service Life Design (2006) [2] and fib Model Code for Concrete Structures 2010 [3], respectively. To perform a representative study, three groups of European countries were selected, representing different parts of Europe, south (Spain, Portugal), middle (Netherlands, Great Britain and Germany) and northern Europe (Denmark, Norway). Reliability ranges for carbonation-induced depassivation of rebar were calculated for “favourable” and “unfavourable” design situations in exposure classes XC2, XC3 and XC4 [4]. In each design situation the deemed-to-satisfy rules of selected countries were followed. The probabilistic calculations were mainly based on short-term carbonation data. However, some calculations were also based on long-term observation. The latter was implemented for independent validation purposes. The calculated reliability ranges are very broad and in some “unfavourable” situations, the deemed-to satisfy requirements do not guarantee the required limit state (LS) arget reliabilities for the particular exposure. In “favourable” situations less stringent demands would have been sufficient.

x
Debernardi, Pier Giorgio; Taliano, MaurizioAn improvement to Eurocode 2 and fib Model Code 2010 methods for calculating crack width in RC structuresStructural Concrete3/2016365-376Technical Papers

Abstract

The analysis of the mechanical behaviour of a reinforced concrete tie subjected to a monotonic loading in the stabilized cracking stage is performed here by way of a theoretical general model that considers the effect of the so-called Goto cracks (secondary cracks). It is shown, in particular, that the average bond stress along the transmission length depends not only on the concrete strength as assumed by the fib Model Code for Concrete Structures 2010, but also on reinforcement ratio and bar diameter. In this regard, tabulated theoretical values of the average bond stress are proposed as a function of the aforementioned parameters. Moreover, the secondary cracks reduce the effect of tension stiffening on the relative mean strain. On the basis of the main results obtained with the general model, some improvements are suggested for the calculation methods proposed by fib Model Code 2010 and Eurocode 2 concerning the average value of the bond stress and taking into account the influence of the secondary cracks on the mean deformation. An improved calculation method is therefore performed. Finally, the theoretical results of crack spacing and crack width obtained with the general and improved methods are compared with experimental data obtained from extensive research on RC ties.

x
di Prisco, Marco; Martinelli, Paolo; Dozio, DanieleThe structural redistribution coefficient KRd: a numerical approach to its evaluationStructural Concrete3/2016390-407Technical Papers

Abstract

Structures made of a material with a very high standard deviation, such as fibre-reinforced concrete, exhibit an exceptionally safe prediction of the maximum bearing capacity when this is derived from characteristic values identified by means of small specimens. This is emphasized when the structures are characterized by high redundancy. In this regard, two reference tests representing two extreme situations are considered: a) simply supported unnotched full-scale beams characterized by a statically determinate loading scheme and b) full-scale slabs on the ground characterized by a statically indeterminate loading scheme. The Italian standard and, more recently, the fib Model Code for Concrete Structures 2010 have introduced a coefficient (structural redistribution factor) that is able to take into account the reduced variability of mechanical bearing capacity when associated with a large volume involved in the failure process and/or when the structure is able to redistribute stresses significantly, thus favouring the average rather than the minimum strength. A numerical procedure taking into account the expected heterogeneity of the mechanical characteristics in the structure is introduced for the first time to evaluate the redistribution factor.

x
Ricker, Marcus; Siburg, CarstenPunching shear strength of flat slabs - critical review of Eurocode 2 and fib Model Code 2010 design provisionsStructural Concrete3/2016457-168Technical Papers

Abstract

The fib Model Code for Concrete Structures 2010 introduces a new design concept for punching shear based on critical shear crack theory. This paper presents and provides the background to the design provisions for punching shear according to fib Model Code 2010, Eurocode 2 and the corresponding German National Annex to Eurocode 2. The different punching shear design provisions are critically reviewed by means of parameter studies and a comparison of the calculated resistances and test results. The safety levels of the code provisions are verified and the influence of the different punching parameters on the calculated resistances is examined in detail.

x
Lima de Resende, Thomás; da Conceição Domingues Shehata, Lidia; Shehata, Ibrahim Abd El MalikShear strength of self-compacting concrete beams with small stirrups ratiosStructural Concrete1/20163-10Technical Papers

Abstract

In comparison with a vibrated concrete (VC) of the same strength class, self-compacting concrete (SCC) typically has a lower coarse aggregate content and, possibly, a smaller maximum aggregate size. This may result in reduced aggregate interlock between the fracture surfaces of a SCC. Since aggregate interlock plays an important role in the shear strength of slender beams, SCC beams may have a shear strength lower than that of similar VC beams, but studies on that subject are still limited.
This article summarizes an experimental programme that includes beams of high-strength SCC and transverse reinforcement ratios around the minimum given by different codes - a case that had not been investigated so far. The shear strengths of those SCC beams are compared with those of VC beams with similar concrete compressive strength and small ratios of transverse reinforcement and also compared with beams calculated according to different code procedures.

x
Sangiorgio, Filippo; Silfwerbrand, Johan; Mancini, GiuseppeScatter in the shear capacity of slender RC members without web reinforcement: an overview studyStructural Concrete1/201611-20Technical Papers

Abstract

All researchers who have tested the shear capacity of RC members without stirrups have observed a large scatter in the results.
The objective of this paper is to conduct an overview study of the causes of the great shear failure scatter of RC beams without stirrups. Thirteen groups of shear tests on comparable experiments, extracted from the ACI-DAfStb evaluation database, are considered. The amount of data available is increased numerically. To this end, based on Eurocode 2 equations for shear resistance and shrinkage strain, a full probabilistic model is defined according to the JCSS Probabilistic Model Code. A multivariate statistical evaluation of outcomes is then performed.
The investigation highlights the fact that both the tensile strength of concrete and high shrinkage values may be usefully considered for more in-depth studies of the phenomenon, whereas geometrical properties and concrete compressive strength seem to be less important or can even be neglected.

x